Contents

List of figures xiiS
List of tables xv
List of text boxes xvi
Preface xvii
Nomenclature and terminology xxi

FART I People and plants: one hundred millennia of coevolution 1

1 Early human societies and their plants 3
 Introduction 3
 Why agriculture? 5
 Gradual transitions 7
 Human beginnings 9
 Climate, migration, and food 11
 Climatic change and small-scale migrations 11
 Moving down the food chain 17

2 Plant management and agriculture 20
 Introduction 20
 The rise of cereals after 25,000 BP 20
 A warm interlude after 15,500 BP 26
 The Kebaran hunter-gatherer culture 26
 The early Natufians and sedentism 28
 Non-agricultural plant management 30
 The remarkable Kumeyaay people 31
 Plant management does not necessarily lead to agriculture 32

3 How some people became farmers 36
 Introduction 36
 A cold, dry shock—the Younger Dryas Interval 36
 Biological and human consequences 38
 A stimulus towards sedentism? 39
 The human response 44
 The later Natufians 44
 Domestication of canids 45
 Early Abu Hureyra cultures, 14,000 to 11,000 BP 46
 Plant domestication and acquisition of agriculture are reversible processes 49
PART III People and plants in prehistoric times: ten millennia of climatic and social change

8 People and the emergence of crops

Introduction
Emergence of cereal crops in the Near East
Rice and millet come to eastern Asia
- Rice
- Millets
Maize arrives in Mesoamerica
Other cultures, other crops
- Squash
- Potatoes
- Pulses
- Soybeans

9 Agriculture: a mixed blessing

Introduction
Early agriculture and human nutrition
- People get smaller but live a little longer
- Sexual differentiation of labour
- Impact of nutrient deficiencies
Human genetic changes in response to agriculture
- Partial pathogen tolerance: bad for individuals but good for societies
- The sickle-cell trait and other antimalarial mutations
- Vitamin D, pale skin, and lactose tolerance
- Dental changes and the recent 'maxillary shrinkage'
How did the sickly Neolithic farmers prevail?
Livestock domestication

10 Evolution of agrourban cultures: The Near East

Introduction
Climatic context of the Holocene: punctuated stability
- The climatic event of c. 8200 BP
- The climatic event of c. 5200 BP
- The climatic event of c. 4200 BP
Establishment and spread of farming: 11,500 to 8000 BP
- Beginnings—from Abu Hureyra to (Jatalhöyük
Elites, cities, and irrigation: #000 to 5200 BP
- The Hassunians
- Halafian culture
- The Samarrans
Ubaid culture 157
The early Uruk period 158

Bureaucracy/empire, and drought: 5200 to 4000 BP 162
The later Uruk period 162
Recovery in the North 167
Rise of the Akkadian Empire 167
The fall of Akkad and Ur 170
Renewed recovery 173

11 Evolution of agrourban cultures: BB South and east Asia 174
Introduction 174
The Indus Valley 174
Beginnings 174
Rise of the Harappan cities after 5500 BP 177
The collapse of c. 4000 BP 178

China 180
Prefarming cultures in north China 181
Beginnings of agriculture 185
Oadiwan, Yangshao, Longshan, and Qijia cultures: 8000 to 4000 BP 185
The collapse of c. 4000 BP 186
Rice farming in southern China 187

12 Evolution of agrourban cultures: IS Africa, Europe, and the Americas 189
Introduction 189
Africa 189
The Sahara 190
The Great Drought of the mid-Holocene 191
The Nile Valley 195
The rest of Africa 196

Europe 196
Linearbandkeramik cultures: 7500 BP and beyond 197
The rise of elites, 6000 to 3500 BP 203

The Americas 203
Mesoamerica 204
South America 212
North America 215

PART IV People and plants in historic times: globalization of agriculture and the rise of science 219

13 Crop management an the classical and medieval periods 221
Introduction 221
Agriculture during the classical period: 2000 BCE to 500 CE 221
Old Babylon and Assyria 221
The Neo-Babylorians 223
The Hellenistic Era 224
The Romans 226
14 Agricultural improvement and the rise of crop breeding
Introduction
Breeding

What is breeding? 234
Empirical breeding and biotechnology 240

Evolution of modern agricultural economies
Renaissance and neonaissance 241
Improvements and enclosures 243

Applying the new knowledge
The birth of practical scientific breeding 245

15 Imperial botany and the early scientific breeders
Introduction
The English revolution
Botany in the ascendant: the seventeenth and eighteenth centuries
Role of the botanical garden 250
Economic and political botany 253

Beginnings of scientific breeding
Plant reproduction and systematic botany 256
Hybrids and their importance in crop improvement 257
Mutations and their uses 259

16 Agricultural improvement in modern times
Introduction
The achievements of modern agriculture
Improving crop management
Inputs 263
Intensification 265

Genetic variation and its manipulation for crop improvement
Quantitative genetics 268
Creating new variation
Hybrids and wide crosses 269
Mutagenesis 269
Transgenesis 272

Screening and selection
Phenotypic and chemical markers 272
DMA-based markers 274

Domesticating new crops—a new vision for agriculture
Why domesticate new crops? 275
A new vision 278
1? The future of agriculture and humanity

Introduction

Agriculture and human population fluctuations

The short- to medium-term future

The fax future—an uncertain environment

Can we ensure that agriculture survives in the long term?

People/ plants, and genes in the next 100,000 years

Notes

Bibliography

Index